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ABSTRACT

-le'study the flow of two immiscible fluids of different viscosities and

equal density through a pipe under a pressure gradient. This problem has a

continuum of solutions corresponding to arbitrarily prescribed interface

shapes. The question therefore arises, which of these solutions are stable

and thus observable. Experiments have shown a tendency for the thinner fluid

to encapsulate the thicker one. This has been 4explained by the viscous

dissipation principle, which postulates that the amount of viscous dissipation

is minimized for a given flow rate. For a circular pipe, this predicts a

concentric configuration with the more viscous fluid located at the core. A

linear stability analysis, which is carried out numerically, shows that while

this configuration is stable when the more viscous fluid occupies most of the

pipe, it is not stable when there is more of the thin fluid. Therefore the

dissipation principle does not always hold, and the volume ratio is a crucial

factor.
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SIGNIFICANCE AND EXPLANATION

When two immiscible fluids of different viscosities and nearly equal
densities flow through a pipe under a pressure gradient, experiments have
suggested that no matter what the initial configuration, the less viscous
fluid eventually encapsulates the more viscous fluid. This property has been
observed for both low and high Reynolds number. For example, in the pipeline
transport of viscous oils, the pressure gradient can be reduced by adding
water because it tends to coat the pipe wall. Another example arises in the
spinning of bicomponent fibers such as nylons, when two polymer melts are
extruded through a tube.

mathematically, anti-planar shear flow (exclusively axial flow with only
one non-zero component of velocity which depends on the coordinates
perpendicular to the axial coordinate) at low Reynolds number in a cylindrical
pipe of arbitrary cross-section has a continuum of solutions; for any pre-
assigned interface shape there is a possible flow. Previous theoretical
attempts to account for the unique observed flow have relied on the 'viscous
dissipation principle' which states that the most favored configuration is the
one which minimizes viscous energy dissipation for given volume flux. This
holds for low Reynolds number one-component flow but has no mathematical basis
for bicomponent flows. Rather, we thought that a stability analysis ought
to be done. in fact, for axisymnmetric flow in a pipe of circular cross-
section, linear stability results for long waves have been calculated
numerically by Hickox (1971). However, he only computed for the case in which
the less viscous fluid is encapsulated by the higher viscosity fluid. He
found this case to be unstable at all Reynolds numbers. He did not consider
the case in which the more viscous fluid is centrally located to test for the
stability predicted by the viscous dissipation principle. We have therefore
reconsidered the linear stability problem but without approximations. The
results shows that the viscous dissipation principle does not hold and
stability depends primarily on the ratio of the radii of the core fluid and
the pipe. Some of our results show qualitative similarities with results of
Yih (1967) on the stability of plane Couette flow. The instability is due to
a mode which is neutrally stable when the viscosities of the two fluids are
equal. It is also neutrally stable in the limit as the viscosities become
large so that the instability is purely a finite Reynolds number effect. This
can also be seen in Hickox's work and provides a reason as to why the viscous
dissipation principle is not always in agreement with analysis of stability.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the authors of this report.
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1. Introduction t peeiai

"God is subtle, but not malicious." Einstein

"Mother nature Is a bitch," Murphy.

A major problem in the theory of bicomponent flows lies in their nonuniqueness: The

position of the interface is one of the unknowns, but the equations of motion may permit an

infinite number of different interface configurations. The question thus arises: which

interface positions are stable and thus observable? A number of experiments [1-31, [51,

[7), [11-143 have shown a tendency for the thinner of the two fluids to move into regions

of high shear. This has led to the conjecture that the stable flow can be characterized by

a minimization principle [21, (6]. The amount of viscous energy dissipation should be

minimized under appropriate constraints.

In this paper, we focus on antiplane shear flow in a cylindrical pipe. This situation

has applications in the transport of oil, where the flow rates can be increased by adding

some (less viscous) water. Another application arises in the co-extrusion of two polymers,

e.g. In the manufacture of nylon fibers [2). The implications of the "viscous dissipation

principle" are discussed in chapter 2. The flow of a single fluid is described by the

variational formulation

(1.1) m1 (Vu)
2 
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mere, the velocity has the form u- u(x.y) 0 O, -G is a constant pressure gradient, and

a is the croes-section of the pipe. or a two-component flow, V is a discontinuous

function of x and y. For each choice of 0, the functional (1.1) has a minimum,

leading to a solution of the Wavier-Stokes equations. We impose the constraint that the

volume occupied by each fluid is given. Thus p is allowed to vary in a set of functions

taking constant values in two regions, whose measures are prescribed. The Conjecture

expressed in 12), (6) can then be stated as minimizing (1.1) not only with respect to u,

but also with respect to p. This Is equivalent to saying that the amount of viscous

dissipation (or work, since the two are equal) Is minimlzed for given flow rate, and

maximized for given pressure gradient. Alternatively, we may say that the pressure

gradient is minimized for given flow rate, or the flow rate maximized for given pressure

gradient.

For a general cross-section of the pipe, we do not know whether this variational

problem always has a solution. we show that the existence of the minimizer is implied by

an a priori estimate on the length of the interface curve, but we do not know how to obtain

such an estimate. For a circular pipe, the symmetry leads to an enormous simplification.

The minimizer can be constructed explicitly by elementary means. It is a concentric

configuration with the more viscous fluid located at the core.

For this case of a circular pipe, we assess the validity of the dissipation principle

by performing a linear stability analysis. This is done in chapter 3. The linearied

equations are solved numerically by Orezag's 11 [sthod of Fourier-Chebyshev expansions.

The linear stability of bicomponnt flows was studied previously by Yih (14] and Hickox [4)

using perturbation expansions for long waves. Yih studies plane Couette and plane

Poiseuille flow with a single flat interface. They did not pose the problem of

selection. In these cases the dissipation principle would predict instability for

Poiseuille flow, while it gives no prediction for Couette flow. Yih found instability in

the case of Poiseuille flows for oette flow, the stability depends on the volume ratio of

the two fluids. Hickox [41 studied concentric flow in pipes with the les viscous fluid

located at the core and finds instability. Re does not consider the reverse case where the

-2-
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more viscous fluid occupies the core as predicted by the dissipation principle. Both Yih

and ickox find that the critical eigenvalue becoms imaginary for zero Reynolds number,

hence the stability or instability of the interface is strictly a finite Reynolds nunber

effect. This -hove that encapulation Is a nonlinear phenomenon, governed by the avier-

Stokes equations rather than Stokes equations. It my be noted that the Wavier-atokes

equations do no arise from a variational principle.

In our cmputations, ve studied stability for both cases in which the less and more

viscous fluids are centrally located. The former is always unstable. For the latter, the

most Important factor was found to be the volume ratio of the two fluids. When the thicker

fluid occupies most of the pipe, we find stability as the viscous dissipation principle

predicts. However, as the radius of the core Is reduced past about 0.7R2. where R2 is

the pipe radius, we find instability. This shows that In any event the dissipation

principle is not strict. It Is parhaps of interest that the solution of design problem

(see 11O of [5]) for the thickness of the water layer which will maximize the flux of oil

in the core of the pipe is in the region of stability for sufficiently long waves. we find

that the critical radius ratio increases with the wave nmber of the perturbation. In

reality, instability of short waves may be suppressed by surface tension, which was not

included in our considerations.

The reader may be inclined to think that our results confirm the dissipation principle

when the volume ratio is biased towards the more viscous fluid. We feel, however, that

great caution is advisable here. The situation we have dealt with has a rotational

sym etry, and symmetric solutions to symetric problems always have a special status. it

Is thus quite natural that the concentric configuration should be preferred over others in

certain situations, whatever the mechanism may be.

On the oth,: hand, we find that the growth rates of the unstable modes for the minimum

dissipation case are smaller by one or two orders of magnitude than for the reverse case in

which the thin fluid Is at the core. Thus the configuration selected by the dissipation

principle appears to be at least less unstable than saome other Interface positions.

-3-
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2. The dissigatton rincIle

we consider flow In a horlsontal cylindrical pipe, whoe cross-section 9 is a

bounded domain with a emooth boundary. The pipe is occupied by two fluids of equal

densities, but different viscosities P I and P2 > 4l" We study stationary antiplane

shear flow, i.e., if x and y denote transverse, end a the longitudinal coordinate,

then the velocity field has the form u - u(xy)e. The flow is forced by a given pressure

gradient grad p - -G-. For this situation, the equation of equilibrium reads

(2.1) div(pVu) = -G

with the boundary condition

(2.2) u @ 0 on 3S •

Here p is a stop function assuming the values P and U2" On the interface between the

two fluids the velocity and shear stress have to be continuous. These two conditions are

automatically satisfied, if (2.1) Is taken in the distributional sense. These continuity

conditions can also be thought to arise as natural boundary conditions. The equations

(2.1) and (2.2) are the Ruler equations for the variational problem

ii 2ln(2.3) mmn in1(VU) 2 _ o

0
Let us denote the integral expression in (2.3) by F (u). Since this is a strictly convex

functional of u, the following lemma is immediate.

Lema 2.1s For any p e 17() such that v > C > 0, there exist one and only one

u 0 a (), which solves problem (2.3), and hence problem (2.1), (2.2).
0

This leia shows that the flow of two fluids has a high degree of nonuniqueness. It

says that for any given arrangement of the fluids there is a corresponding flow field.

Experimentally, however, certain interface positions are observed, others are not. The

question thus arises, which configuration of the interface Is stable.

McLean [6) and gverage [21 have suggested that the stable solution may be the one

which minimizes (2.3) also with respect to V, if, say, the volume occupied by each fluid

is given. That is, v is permitted to vary in the class of step functions

-4-



W 2 + (V 1-1 2 )x 0 I -0 measurable, IQ 1 a )}

where m is a number which specifies the volum, ration and denotes the characteris-

tic function of a i.e.. l.(_X) - I when - afQl and x() 0 otherwise. If we

denote by D the rate of viscous dissipation, and by W the mechanical work done by the

fluid, then

r (U) -
M 2

For any steady flow, we have D = w, and hence the flow that minimizes F Is the one

that maximizes D or W. Also since N - G n u, it maximizes f. u, the volume flux of

the fluid.

In general, we have no proof that the problem

min F (u)

0

always has a solution. A minimizer does exist, however, if we impose an a priori boundary

on the length of the fluid Interface. For this purpose, let us define

S- (P e 01 For any c > 0 there is a set of at most [L/e] + 1

closed disks of radius e which completely covers QI} .

This condition is a mathematical rigorization of the statement that the length of au

is less than or equal to 2L.

Theorem 2.2. (due to N. Etnary)

There exists Mi a 4 and u 6 810) such that
L 0 uhta

P (u ) - m F U(u)

Proofs Let V U be a minimizing sequence. Then clearly (a is uniformly bounded in

1 ( ) and hence has a weakly convergent subsequence. We shall show next that any sequence

(,n
}  in has an almost everywhere convergent subsequence whose limit is again in 0 .

L.

.8'



To see this, lot C > 0 he given. Pot each #n, we have at most CL/)l + I C-disks

covering W1. Denote the centers of these C-isks by .... M tL . We can nowft.. a/ n n e anno

n k k k n -c0
extract a subsequence N such that " 1 , .. ,* [ /c]41 converge, say, to

nk

N,...,'
M

EL/S 1* Then, for any fixed 6 and k large enough, the boundary of S1 is

covered by (C+8)-disks centered at N M,...,NIL/0+1 and thus by a set of measure

w(C+5)2 ([L/Cl + 1). The complement of this set consist of finitely many components on each
nk

of which the p are constant for k large enough. Hence we can extract a convergent

subsequence there. Repeating this arguent for a sequence E such that Em + 0 and

using the standard diagonal argument, we find an almost everywhere convergent subsequence

of (,n). Now assume un e *L' n + p almost everywhere and u 0 L Then there is some

C > 0 such that the boundary of Q1(P) - ((x,y) e Q, P(x,y) - U cannot be covered by

[L/Cl + t C-disks. If that is so, then there is a finite number Pi1 P2.... ,PN of points

in 301 (1) which cannot be covered by L/l + 1 C-disks. Wowever, for any 5 > 0. and
n n

any k - ,...,N, there is a point Ck e 3a1 in the 6-neighborhood of PO if n is

chosen large enouah. Since u n e *#, it follows t'at the n can be covered by

CL/l + 1 C-disks, and hence that Pk are covered by [L/C] + 1 c+6-disks. Letting

5 * 0, this yields a contradiction. Thus by extracting convergence subsequences, Ve find

P * V a.e. and un u weakly in H 1(). It is an easy consequence that
(n)-ni --- 1 vn

n , n * - M loreover there is a sequence v of convex combinatins of the

u such that v
n 

* u strongly in R1(0) and Vvn . Vu almost everywhere. Since the

functional

K(11,u) - ii 
1'(vu) 2 

- G

is convex, we 
have

li ((1,v
n ) I 10 K(In.,

n )

n n

where n is an appropriate convex combination of the n. According to Fatou's lemma, we

have

P (u) .(11'u) 4 lie K(n,v n ) . lim K(nnu n ) = lie (u n

.- nf n- p

This proves that the pair (pu) is a winimizer



For the special case of a circular pipe, an elementary argument is possible. The

following modifies an idea of fterage (23. Let Q be a circular disk, and let u0  be the

solution of h -G, uI , 0. we put u O + ;. Then the integral in (2.3) is equal

to

IQ Yu0Yu - O

" In 2 2 fVu)2 - I Vu0
2

22 2

"IQ I P1 (V; 2 ._ (Vu0
2

1 1 p

where 02 2 1\0I 1is the region occupied by high viscosity fluid. The first of the

sxproesslons Is zero. The term

IQ 2 + 2is
I2 2p2 (vu0

2 
+ 2 o, 1vu 0) 2

maximal if Q 2' the region of higher viscosity, is where (Vuo)2 takes its smallest

values; i.e. if A2 is a disk in the center of the pipe. In this case 30 1Is a line on

which uo is constant. If we then choose u 0 in the outer region, and u - const. in

the inner region such that u is continuous, then the continuity of velocity and shear

stress across the interface is satisfied. The expression

2a 2 1 2Vu

becomes zero, which is clearly its minimal value. We have therefore proved

Theorem 2.3.

If Q is a circular disk, then

win f j(V) 2 - Gu

u0(A

t

is attained for a concentric configuration with the higher viscosity in the inner region.

-7-
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3. Linear Stability

We consider a circular pipe of radius R2 and a basic flow given by an axial velocity

W, (aR + (-M)R 2 r 21 0 4 r 4R
4p 2 2 2

(3.1) U2 " 2(R2- r
2
) R r 4 R2

12

Here U,# U2 are the viscosities of the fluids in the inner and outer region, and G is

the applied pressure gradient. We superimpose an infinitesimal disturbance which Is

periodic in the axial direction and use a Fourier expansion in the azimuthal direction; we

therefore represent the disturbance by

(u,v,w;p)exp(-Imct + iaz + in 8)

where u, v, v denote the radial, azimuthal and axial velocities and p is the

pressure. The stability equations are derived from the Wavier-Stokes equations plus the

conditions that velocities and tractions are continuous at the interface. From these

conditions the following eigenvalue problem for c is obtained (41 (for simplicity, we put

the density of both fluids equal to 1):

21 n1 2 21nvj(U , -p' • + - Iru')' - +U - nu -
r 2 au- -

r r

. n+1 2 inu Iia(W-c)v - -
' n + [I (rv' - _ v - av +

r 2  
-av 2 °

r r
(3.2) 2

islW-clw + uw' = -lop + Ii. rw')' - w-aw

r

(ru)' + Inv + rlaw - 0

The boundary and interface conditions are

. . . . . . .L . -. .



U - v -w 0 at r-3 2

[v] - u] - 0

[p] - 2[uu']

(3.3) (Pv'1 + 'I (inu-v)[u) - 0 at r -

EPv° ] 
+ lauju] - 0

uW'] + (W-c)ia(w] - 0
d

Here a prime denotes , I ] denotes the difference between the values of a quantity on

both sides of the interface, and V is given by (3.1).

4. Numerical calculations

4.1. Method of calculation

We eliminate v and p from the third and fourth equation in (3.2), so that the

problem reduces to finding u and v from the remaining equations and the boundary

conditions (3.3). When eliminating v from the fourth equation, we divide by r, thus,

even if we impose the condition that u and v are smooth at r - 0, we allow v to

have an (unphysical) - singularity. The third equation in (3.2) has a regular singularr

point at 0, and -i Is a root of the indicial equation precisely for n - 1. Since the

second root is +1, the unbounded solution generally behaves like -1 + ar ln r near
r

r - 0. It can be shown that the coefficient a of the logarithmic term vanishes iff

c - W1 (0) - 3n Isi. This appears in our calculations as an extra oigenvalue for n - 1,

which must be dismissed as unphysical.

For simplicity, we take the inner radius R1 equal to 1. We express the radial

dependence of the disturbance as a linear combination of Chebyshev polynomials Tm(r) -

cos(m arccos r) as suggested by Orazsag (8 and truncate. Hence the radial velocity Is

N

u- I uTm(r) 0 4 r 4 1
-m0

N
- u T ( ) 1 4 r R
m-O

-P

.. -.- .- .i



where r-I -+ 21) ranges from -1 to 1. The term of highest differential orderR2-

are r4u.... and r3 v.' in the first equation of (3.2) and r3u'" and r2 vm in the

second equation. We would like the term u'"' and v',0 to be approximated to the "m

degree. Sin e we chose u to be an Uth degree polynomial, both ters are of degree

U - 4 If v is a polynomial of degree 1 - 1. We thus put

W-1
V " v!~(r) 0 r( I

• - I v T(F l r~t
a a R2

If the azimuthal number n is even, then u and v must be odd functions of r

(consequently p and v are even), if n is odd, then a and v are even. Consistent

with this, the sam e in the inner region are restricted to odd (or, reap., even) Chebyshev

polynomials. The expressions for a and v are Inserted into the equations, which are

then truncated at orders N - 4, 9 - 3 reap. For convenience, we take U to be odd. in

the outer region, we then have 2W + 1 unknowns and 2N - 5 equations. In the inner

region, we get U + 1 unknowns and N - 2 equations if n is odd, while we get X

unknowns and N - 3 equations if n is even. Together with the 9 boundary and

interface conditions, this yields 3W + 2 (for n odd) or, 3 + I (for n even)

equations and unknowns.

The elgenvalues c of the resulting matrix equation were computed in complex double

precision on a VAX/V18 V02 system using the XNSL routine RIGSC. The flow is unstable if

the Imaginary part of c is positive.

4.2. Accurac and convergene

We compared the elgenvaluse for the one-fluid case P1 . v2 with the results of

Salwen and Groech (91 and Salven, Cotton and Groech 1101. For n - 1, they list four

eigenvalues with the mallest imaginary parts at Reynolds number ft - a - 100 and
- 1 02

-10-



higher, to 5 decimal places. The velocity scale = to fixed at 1, and a - 1. go

are mainly interested in low ?Aynolds nmbers, so we checked our calculations at Me - 100

truncated at I a 19 for various values of 2 to be aed in blocqPOment flows. A

comparison Is shows In figure 1. Vor other azimuthal modes ad lower value of Ma, our

;lgenvalues wre checked against graphs published by Malve. et al. At best, we -a read

their graphs to 2 digits, and our results for V - 19 agree within that acoursoy. Our

values for s - 10 and 100 are @hown In figures 2 and 3.

1Pigpe 1

Re 0Y4i 4a 2 .100

2
velocity scale G R2 /ia I

modeI

-2 1

2 0a elgenvaluoe

Published by 1 .01 .04 .57256,-.14714 .55198,-.37446 .73735,-.47946 .6247,-.74907

Salvos, cotton a Grose)___________ 
______

Our computatlon 5 .05 .006 U .66248,-.74908

with ! - 19, pI - 2 .02 .02 .55199,-.37446 U .66248,-.74907

1.23 .0125 .32 .S7254,-.14716 .55214,-.37448 .78734,-.47950 .64220,-.74907

comparison of our one-fluid 1A, U2 eigenvalues with those published

by lven et al for node 1 and ft - 100.

-.11-



Figure 2

R2 - 1.0

Is a 0.16

%- 1.6

G - 0.24

N " 19

N"igenvalues

0 .66676#-1.5776 .81338,- 2.6913 .66657,- 5.0195 .72389,- 7.1393 .66666,-10.44

1 .49106,-1.3935 .76202,- 2.6073 .62772,- 4.8496 .70556.- 7.2282

2 .40791,-2.6274 .76307,- 4.2327 .57022,- 7.0640 .71238,- 9.6639

3 .36440,-4.0905 .73178,- 5.9064 .535S4,- 9.5574 .70101,-12.372

4 .33513,-5.79%2 .69400,- 7.8343 .50882,-12.269 .66325,-15.340

5 .31324,-7.7438 .65669,-10.006 .48652,-15.261 .66345-1.587

Our one-flid eigenvalu. for modes 0 to 5 at Re . 10 which can be

compared with published graphs of 6alven et al

-12-



Figure 3

As100 1.2- 0 N-19 IIU

eigenvaluse

0 1.25 .0125 .032 .68626,-.27345 .81160,- .28413 .64648, .72999, .6"679, .69394,

- .45939 - .73274 -1.0274 -1.3568

2.0 .02 .02 .66627,-.27345 .S1IG0,- .28413 .6467, .72993, .66663, .69444,
-.45937'L .73276 -1.0277 -1.3579

5.0 :.05 .006

2 1.251t.01 2 5 .032 .49400,-.25600 .70711,- .62217 .56483, .68056,
-.58500 -1.0059

2.0 '.02 .02 .49400,-.25600 .70710,- .62217 .56482, .68051,
- .5849" -1.0061

5.0 ;.05 .008 .70710,- .62218 .56482, .68052,
4 -___________ __________ -. 58497 -1.0062

3 1.25 .0125 .032 .44097,-.39197 .64116,- .71996 .56903, .67818,
- .89443 -1.2737

2.0 ;.02 .02 I 44068,-.39189 .64097,- .71991 .S6913, .67734,
- .89404 -1.2767

5.0 '.05 .001 49,-.19 .56914, .67722,
j.6096~ .199 -. 89402 -1.2769

4 1.25-0125 .032 .40024,-.55701 .62004,- .88366 .53298, .66487,
-1.1892 -1.5714

2.0 !.02 .02 .40024,-.55701 .62006,- .88365 .53294, "6482,
-1.1892 1-1.5714

5.0 1.05 .008 .40023,-.55702 .62007,- .88361 .53301, .66372,

- [-1.1892 -1.5719

5 1.251.0125 .032 .36772,-.74937 .59648,-1.0844 1.50485, .64873,
-1.4990 -1.8911

2.0 .02 .02 ,36772,-.74934 .59647,-1.0845 .50473, .64868,
-1.4986 -1.8919

5.0 05 .0 5 6 4 - .8 5 .50458 6505 *2
1.0964 ,1.81 -1.4987 I e 0

Our one-fluid eigenvals for modes 0 and 2 to 5 at Re 100 which

can be compared with published graphs of Balven at &l.
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The Instability due to & Jum in viscosity to governed by an Interfacal mode, which,

at V, 12 c - W1), as can be see from the last interface coedition In (3.3).

The value of o, and in particular its Imaginary part, Is typically maller by orders of

magnitude than the remaining elgenvalues. tnse a will generally be approximated le.

Vll than the other eigenvelues. Since we ore mainly Interested in the sign of . of, we

are satisfied with 2-digit-accuracy.

Appropriate lsynolds numbers for the inner and outer fluids are t I 1 1(0 ),/V 1

and To V 2 2(R )R2/02 reepectively. In our figures, Is will denote a reference

Reynoldn number W2 (M)R 2 /P 2  in analogy with the si-fluid flow, and "veloelty scal8e will

refer to W2(0). The In(o) is proportional to the velocity soale so we have chosen

V3(0) - 1.

Figure 4a to 40 display samples of convergence tests. There are three main

features. First, since we used an equal number of modes in the inner and outer regions, we

expect convergence rates to worsen as RI/12 moves away from 0.. Figure 4a compares

Rg/i 2 - 0.5 with 0.2. At RI/R 2 - 0.5, all modes have converged to at least 2 digits

by N - 19. At R1/t 2 - 0.2, N - 39 Is required for similar accuracy for modes I to

4. Also, an R 1/ 0, im(c + 0 so round-off error* enter. Our method of expansion has

an accuracy of infinite order so that once iWc) has converged to 2 digits, convergence

to more digits will occur for values of V which are not much larger.

Secondly, at low ft, convergence In worse for the higher modes because ia(c)

decroases fast in magnitude as node number increases. fofer to figure 4b for RI/% - 0.6,

@12 = 0.1, Re - 0. 1. However, omputations need not be done for very mall ft because

im(c) Is proportional to Rs in the limit as Re # 0. Figure 5 shows that this low Re

regime extends up to about ns 1, 1t 2 10, or Pe - I for the values of ia1/a2 we

consider. for higher fs (figure 4c) the magnitude of i() i similar for all modes.

Note that ?A I increases as uIAs 2  decreases and this accounts for the slower

convergence at maller pIA, 2 , (see figure 4d). At Re - 1000, the megnitude of the

interfacial mode i similar to that of the stable eigenvalues associated with one-fluid

flow. Convergence Improves for given a and it/R2 as i I2 increases.
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Convergesoe tests
Vielocity Scale -I

Figure 4

?A 100

no"e mi1 2 a
3.19-23 3.29 13-39

0.5 0 .1 2.3199, -. 9033-1 2.3200, -.809602-1

.34 1.0456, -.994403-1 1.0456, -.994593-1
5 .9 .75041,-.283933-3 .75041,-.2830SP-3

1.2 .74972, .2760231-3 .74972, .276763-3
0.2 0 .2 1.1062 ,-.321SW32 1.1062 ,-.321653-2

.3 .96904,-.245593-3 .96904,-.245613I-3
1 .6 .%6209,-.14"948-3 .96234, .4455892-5 .96236, .161573-4
1.2 .95626, .163433-3 .95606, .441093-4 .95805, .3487763-4

4 .2 1.0021 ,-.5314111-3 (3.25) .96515, .1995111-3 .95995, .1127411-3 .96002, .113253-3
1.4 1.0432, .801443-2 _____ _______ .95"97,-.541693-4 1.%001,-.535779-4

Figure 4b

FA 0.11 Qt2 0-1

11/R2 3o"0 1/1 a

0.6 0,1,2 .2 to 2 agree to1 at 3.232dqefr 9 3

3 .6 .64665, .274043-6 .6466S, .328503-6
1.2 .63501,-.121123-6 .63501,-.909262-7

4 .6 .64327, S523942-7 .64327, .52039-7
1.2 .63766, .106632-7 .63765, .109653-7
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Figure 4c

soe ,, 1000 C41t2  ,- 1

RI/t 2 IoaelAA2  c

3-19 3-23

0.6 0 .2 .93533,-.21227 1.0734, -.22125
.4 .47541,-.944393-1 .47743,-.953763-1
.6 .44044,-.282482-1 .44029,-.217S$-1

1 .6 .46S, .610553-1 .4695S, .514S42-1
2 .6 .440S4, .39269W-1 .43S0, .365653-1
3 .6 .42012, .2076S-1 .41937, .263933-1

Figure 4d

MI 100 R2 " 1

RI/IR mode 1/0 2  c

M-19 N23

0.9 4 .2 .28227, .414219-1 .27855, .431701-1
.8 .19747, .170793-2 .19747, .170793-2

1.2 .16410,-.725862-3 .18410,-.725902-3

0.6 0 .2 .74SS8, .195353-1 .74624, .192163-1
.4 .67264, .86605-2 .67263, .868103-2

1.2 .63835, .373673-3 .6303S, .373671-3
4 .2 .71083, .280603-1 .71152, .280253-1

.4 .65854, .946022-2 .65853, .946713-2
1.2 .63931, .403202-3 .63931, .401209-3
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i gure 4e

Re 100 MR 2 10

hi / 30'aI,1 2  c

t3.19 3.23

0.6 0 .2 .74558,.195358-1 .74624,.19216Z-1
.4 .67264,.866052-2 .67263,.866103-2
1.2 .6363S, .373673-3 .63835, .37367-3

4 .2 .71083,.280603-1 .711S2,.20253-1
.4 .65854,.94602V-2 .65853,.94671x-1

1.2 .63931, .403208-3 .63931, .403202-3

0.9 0 .2 .30635,.232482-1 .30454,.20957-1
.4 .23368, .109063-1 .23385, A0785-1

1 .2 .30903, .232553t-1 .30379, .214453-1

Re-1

R1/R 2  p 1/ 2c

N-19 3-23

0.8 0 .2 .38505,.103638-1 asm to all digits

Convergence tests for velocity scale 1, RI - 1, c to the

Interfacial elgenvalue, N is defined in 14.

-17-
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Fi gar* 5

Table of a

*R 1.0

3t "& 1.66

Igo" p IA 2  Me 0.1 so - 1.0 ?A - 10 Me- 100

M-19 3-21 0.19 3-19

0 .2 .97455, .1011031-2 .97610, ."697611-2 1.0332, .2754611-1 .95413,-.21492
.4 .80551, .054762-4 .80554, .455703-3 .60032, .362052-2 .44021,-."42G73-1
.6 .72214, .243742-5 .72215, .2633013-4 .72243, .220023-3 .73239,-.9"4792-2
.6 .672",.-.34430"- .67266,-.544659-5 .67270,-.579$53-4 .67521,-.227103-2

1.2 .61692, .765663-6 .61692, .785813-5 .61691, .769103-4 .61608, .103153L-2
1.4 .59961, .140191-5 .59961, .140193-4 .59980, .140473-3 .5"673, .162363-2
1.6 .56667, .1642-5 .56667, .184263-4 .58666, .1644811-3 .58S54, .2004219-2
1.6 .37G30, .215t163 .57630, .215183-4 .57626, .215313-3 .57519, .226023-2
2.0 .56794, .236703-5 .56794, .236703-4 .56793, .236783-3 .S6667, .243533-2

1 .2 .72407, .173138-2 .72494, .172723-1 .76572, .12556 ."6511. .23976
.4 .69522, .303673D-3 .69524, .3036213-2 .69752, .29763L-1 -. 74469, .11063
.6 .67276, .945153-4 .67276, .945123-3 .67257, .939 093-2 1.67945, .555218-1
.6 .65476, .2910931-4 .65476, .291123-3 .6546I 1.269530-2 .65139, .216041-1

1.2 S627"8.-.IS5R-4 .62768,-.156653-3 .62776,-:156022-2 !.63404,-.115362-1
1.4 .61723,-.25033]t-4 .61723#-.250319-3 .61739,-.24949V-2 1.62850.-.160113-1
1.6 .60026,-.309722-4 .60627,-.309713-3 .60845.-.306912-2 1.62287,-.223173-1
1.6 .60049.-.3485911-4 .60048,-.34858Z-3 .60067,-.347883-2 .61731,-.2552S88-1
2.0 .59365,-.374339-4 .393",.-.374332-31 S9385,-.373742-2 4 .61193,-.2S06719-1

2 .2 .70898, .606573-3 .70902, .6062519-2; .72345, .557103-1 .684503, .13246
.4 .68357, .101092-3 .6356, .101083-2 .68385, .1005013-1 i.70346, .569631-1
.6 .66499, .2995331-4 .66499, .299523-31 .66493, .298442-2 !.66469, .230133-1
.6 .65092, .676263-5 .65092, .676143-4 .65069, .873173-3 .64945, .704493-2

1.2 .63136,-.423083L-5 .63138,-.423462-4 .63139,-.422228-3 .632S7,-.3390719-2
1.4 .62447.-.640903-5 .62"47,-.641192-4 .62449,-.639402-3 1 .62638.-.513379-2
1.6 .6186,-.752112-5 .6106,6-.751913-4 .61890,-.7499319-3 62117,-.605153-2
1.6 .61428,-.602212-5 .61429,-.802202-4 .61432,-.600163-3 1.61677,-.649203-2

- - 2. .61051,-.816591-5 .61051,-.616513I-4, .61054,-.81458&-3 .61303,-.664IOX-2

3 .2 .66296, .271771-3 .66300, .271693-2 .68732. .26246X-1 ..76245, .69762N-1
.4 .66619, .39952B-4 .6"620, .399S33-3 .66629, .3983631-2 .67516, .294103-1
.6 .65453, .993643-5 .65453, ."99303-4 .65452, ."9212233 .65474, .66953-2
.6 .64615, .236723-5 .64615, .236723-4 .64615, .236303-3 .64595, .20913Z-2

1.2 .63540,-.731843-6 .63540,-.731792-5 .63540,-.730162-4 .63551,-.612392-3
1.4 .63191.-.8317ig-6 .63191,-.831022-5. .62925,-.66552-4 .63205,-.666363C-3
1.6 .62924,-.656151-6 .62924 ,-.67723-5 J .62925,-.665522-4 .62935,-.492643-3
1.6 .62719,-.39763Z-6 .62719,::397722-51 .62719,-.395213-4 .62726,-.227359-3
2.0 .62561,-.89712z-7 .62561,-.S9692X-6 .62561,-.977052-5 ..62562, .66t792-4



4 .2 .66341, .136631-3 .66343, .136"12-2 .6"490, .13"44-1 .71072, .62508-1
.4 .6S379, .17334]3-4 .65379, .173333-3 .65393, .1730731-2 .65797, .146032-1
.6 .64742, .3261=3-5 .4742, .324S6-4 .64742, .324302-3 .64782, .30516M-2
.6 .64306, .45"42-6 .64306, .45S7811-5 .64306, .455303-4 .64314, .430593-3

1.2 .63731, .15272-6 .63761, .152302-5 .63761, .152103-4 .63774, .150033-3
1.4 .63623, .470253-6 .63623, .451611-5 .63623, .457953-4 .63609, .447463-3
1.6 .63507, .762239-6 .63S07, .779233-5 .63S07, .773963-4 .63467, .75963-3
1.8 .63422, .106233-5 .63422, .107193-4 .63422, .107173-3 .63398, .104503-2
2.0 .63360, .13254S-S .63360, .132503-4 .63359, .132463-3 .63332, .129233-2

5 .2 .6SISG, .7404411-4 .65157, .740373-3 .65219, .733363-2 .6791S, .434353-1
.4 .64662, .812203-5 .64462, .812213-4 .64664, .81153-3 .64667, .747953-2
.6 .6434, .996723-6 .64346, .997511-5 .64349, .997523-4 .64391, .991023-3
.9 .64141,-.615001-7 .64141,-.622223-6 .64141,-.621503-S .64151,-.505759-4

1.2 .63902, .283913-6 .63902, .28294115 .63902, .282843-4 .63895, .270923-3
1.4 .63633, .573933-6 .63933, 575423-5 .63633, .575203-4 .63621, .554263-3
1.6 .63795, .927S63-6 .63765, .8270W3-S .63784, .82668-4 .63769, .799571-3
1.8 .63750, .103209-5 .63750, .103053-4 .63750, .103023-3 .63731. .999133-3
2.0 .63725, .1197711-5 .63725, .119071-4 .63725, .119043-3 .63705, .115703-2

Table of Interfacial eigenvalues c at moderate *RI2, sowing the linear

behaviour of a for mall Pa.
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Figure 6

OR 2 - 0.1

Vol. SalS - 1

if " - I c .64Z 1/02 1 ".4

NodeuI As 2  0. t - 1.0 s "100

3-23 3-21 y"19

0 .2 1.0278, .768323-4 1.0279, .768133-3 1.0789, .11537Z-1
.4 .82497, .157963-5 .82497, .157943-4 .82722, .833753-3
.6 .73040,-.343198-6 .73040,-.343143-5 .73063,-.377592-3
.8 .6767,-.182623-6 .67571,-.1856,-P-3

1.2 .61490, .11602D-6 .61490, .11599W-5 .6149 .116303-3
1.4 .5929, .196669-6 .59629, .186763-5 .5928, .187033-3
1.6 .58193, .23024Z-6 .8193, .23056z-5 .58192, .230762-3
1.8 .57052, .25857-6 .570S2, .258193-5 .57051, .258333-3
2. .56123, .275783-6 .56123, .275843-5 .6122, .275943-3

2 .73041, .136803-3 .73041, .136803-2 .76520, .12215
.4 .69982, .283553-4 .69982, .283523-3 .69829, .281833-1
.6 .6757, .969-5 .67567, .996663-4 .67466, .981133-2
.8 .65614, .33240Z-5 .65614, .332133-4 .65S76, .327203-2

1.2 .62645,-.193523-5 .62645,-.193513-4 .62"4,-.191643-2
1.4 .61491,-.31559Z-5 .61491,-.31547Z-4 .61519,-.313103-2
1.6 .60496,-.395543-5 .604%,-.39567Z-4 .60529,-.393373-2
1.8 .59629,-.44965Z-5 .59629,-.44962Z-4 .59664,-.447593-2
2. .58868,-.48594Z-5 .58868,-.486242-4 .58903,-.484533-2

2 .2 .71491, .596743-4 .71491, .596773-3 .72743, .561253-1
.4 .68751, .105523-4 .68751, .105513-3 .68756, .10494Z-1
.6 .66732, .331223-5 .66732, .331193-4 .66720, .32V$53-2
.8 .65196, .10125Z-5 .6516, .101283-4 .65192, .100793-2

1.2 .63050,-.518173-6 .63050,-.51952Z-5 .63053,-.517563-3
1.4 .62285,-.803422-6 .62285,-.804419-5 .62289,-.80154Z-3
1.6 .61661,-.96244Z-6 .61661,-.96187Z-5 .616660-.959039-3

1.8 .61148,-.104558-5 .61148,-.104599-4 .61153,-.10426Z-2

2. .60722,-.10832Z-5 .6 0 72 2
,-.106343-4 .60727,-.108059-2

3 .2 .68607, .273403-4 .68607, .273463-3 .69023, .265123-1
.4 .66817, .416533-5 .66817, .413743-4 .66825, .412651-2
.6 .6556, .89123-6 .65566, .107663-4 .65565, .107023-2
.8 .6465, .328503-6 .64665, .269923-5 .64664, .269453-3

1.2 .63501,-.98926Z-7 .63501,-.9472S-6 .63501,-.933313-4
1.4 .63121,-.10326Z-6 .63121,-.115662-S .63121,-.11630Z-3
1.6 .62829,-.170031-6 .62629,-.110253-5 .62629,-.108353-3

1.8 .62603,-.27977Z-6 .62603,-.840663-6 .62604,-.86494g-4
2. .62429,-.490642-7 .62428,-.518689-6 .62429,-.587439-4
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I

4 .2 .4492, .138243-4 .66492, .138223-3 .66646, .135963-1
.4 .65470, .177623-5 .65470, .178053-4 .65474, .177593-2
.6 .64792, .347293-6 .64792, .344753-5 .64792, .344133-3
.6 .64327, .520899-7 .64327, .52700-6 .64327, .526213-4

1.2 .63765, .10653-7 .63766, .112S79-6 .6376S, .112163-4
1.4 .6359S, .437852-7 .63595, .398033-6 .63595, .396723-4
1.6 .63470, .664503-7 .63470, .71853-6 .63470, .706963-4

I 1.8 .63379, .988722-7 .63379, .974513-6 .63378, .993733-4
2. .63311, .133593-6 .63311, .125663-5 .63311, .124543-3

Table of Interfacial eigenvalues at moderate PA, shoving the linear

behaviour of c for mAlI am2  and a Pa.
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Thirdly, we have checked with Elokox'm figure 2 (1971) where a is mall. Mickox

showed that given 1l/ 1 1/32 and mall enough *, results for any am can be

deuced from calculations at one value of me; namly that im(c) in proportional to

x ymolds number and real (c) Is not. Elm figure 2 shows that in(c) ver

I/% , I for seleoted valuse of oIAl 2 < 1 for modea 0 and 1. The qualitative

behaviour in figure 6 agrees with Rickoxe's graph. Direct comparison can be made at

S1 A2 - 0.2. In his notation, our in(c) is a(cI/i)Y1 (0). Be omputes (C©/il) x 104

where R - lR0) I/VI so that with our values at Re - 0.1, IA I 2 a 0.2, R1/R 2 - 0.6 In

4
figure 6, we obtain (cI/iR) x 10 - 7.17 for mode 0 and 13 for mode I which agree

with his graph. The deviation from linearity in Re at mall u11i 2 and PA - 100 is

due to the fact that Rickoz's result is a "mall a x Reynolds number" result. Thus his

application to oil-water flows when the Reynolds nmnber i of order 105 would require

extremely mall a.

vor large aR2# the response is very similar for all modes so that convergence tests

are done for one or two modes. Sec figure 4.. The ia(c) is largest at p /IA2 -.2 where

convergence is worst for our range.

S. Results;

when the Reynolds number is sera, we can neglect the left hand side of the fil st hree

equations in (3.2). Then c occurs only in the interface condition (3.3). By

substituting - iv, V - iv, we can make the equations (3.2), (3.3) real, and since c

is a simple eigenvalue, It must be real. Thus MR c vanishes as Re + 0. Poreover, the

equations are invariant under the change v + Au, p + Xp, c + Ac, W A u for any positive

factor A. Therefore, if the velocity scale and P are changed by the same factor to

keep Re fixed, c is proportional to the velocity scale. At low Reynolds number,

therefore, Re c Is proportional to the velocity scale, while Zn a is proportional to

the velocity scale times the Reynolds nmber. Since we have normlised the velocity scale,

we have Im c - Re, while Re c tends to a finite limit as Re + 0. This behaviour of

the interfacial mode Is very different from that of the remaining eigonvaluse, which are
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proportional to as mo * 0. At very low Poynolds numbers, this leads to severe

numerical problems, however, it sems that we can make s small enough to be in

the *linearised* range (of. chapter 4).

On all graphs, dark points represent computed values and lines which join them are

interpolants. Solid lines are sometimes used to avoid confusion but they are also

interpolants. Numbers printed next to the curves denote the azimuthal mode number except

on graphs 7 to 11 where they denote the ratio i. In all graphs, the velocity scale Is
12

unity. On all graphs, except for graphs 12 sad 25, the vertical axis measures the

imaginary part of the interfacial eigenvalue c.

Noderate 012 (- I), moderate Rs (- 100), v 1/02 6 0.2,2)

The sign of is (c) at given R1/R 2 , 0111 2  does not appear to be very sensitive to

changes In aR2 or Ps. For example, at R2 - o, ompare ft - 1, a - 0.06 (graph 1)

Rs - 1, a - 0.6 (graph 2), s - 10, a - 0.6 (graph 3) end Re - 100, a - 0.6 (graph 4).

At 12 - 1.25,',a - 0.8, compare Me - 1 and 100 (graphs 5, 6).

The crucial parameters determining the sign of im(c) are R1/R2 and U/2 .

Graphs 7 to 11 display the behaviour of im (a) for mode& 0 to 4 at Re - 700 as
"1

a function of R1/1 2 , keeping P1 constant. note that in many cases, modes 0 to 4

are not simultaneously stable or unstable. X% (c) decreases to 0 as R1/R2 decreases

"11

from 0.5 to 0 or increases from 0.9 to 1.0. On graph 7, the curve for - - 0.2 isP2

plotted from tracking the interfacial eigenvalus from R1/2 - 0.9. There is a degeneracy

for mode 0 between R1/ 2 - 0.5 and 0.6 and between P2 0.2 and 0.4 so that when the

;2
igenvalue is tracked at 111/12 * 0.5 from 1 down to 0.2 (figure 7) and then at
U1

- 0.2 from R1/V 2 - 0.5 to 0.9 (figure 8) we arrive at a different eigenvalue than if
U2

we follow it at R1/R2 - 0.9 from - - 1 down to 0.2. Tracking the interfacial eigen-

value for R1/R2 3 0.6 as in figure 9 yields values in column c2  in figure 8.
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Fi gore 7

R1/it 0.5 *Re - 100 , uR2  1 Nolde 0

fte first colmmn tracks the interfacial elgenvalue c from its value at M I Al2 1 down

to V5/* A 0.2.

The second colmn tracks a one-fluid elgenvalue cSG recorded by Salwen and Grosch for

1 1.

Truncation of Chebyabov polynomials Is at N - 19#

I c

~2 so__________ ___________

1.0 .75 ,0 .81160,-.28413
.98 .75272,-.288829-3 .81567,-.28105
.96 .75556,-.599092-3 .81988,-. 27791
.94 .75851,-.9297IN-3 .82322,-.27471
.92 .76159,-. 128593-2 .82872,-. 27146
.9 : 76481.-.16692Z-2 .83337,-.26815
.88 *.76817,-.20822Z-2 .83819,-.26478
.86 *77169,-.25283Z-2 .84319,-.26136
.84 .77538,-.30110Z-2 .84838,-.25788
.8 .78330,-.410332-2 .85938t-.25078
.6 .83885,-. 141162-1 .93110,-.21345
.S2 .87350,-.228253-1 .97119,-.19946
.S .88404,-.259203-1 .98254,-.19639
.48 .89557,-.29567Z-1 .99445,-. 19362
.46 .90825,-.339182-1 1.0068 ,-.19123
.44 .92234,-.39186Z-1 1.0196 ,-.18933
.42 .93815,-.456863-1 1.0322 *-.18807
.4 .95619,-.53912Z-1 1.0440 *-.18751

.38 .97740,-.647033-1 1.0531 ,-.18740

.36 1.0040 ,-.796462-1 1.0551 ,-.18568

.34 1.0456 ,-.994603-1 1.0389 ,-.17766

.32 1.1013 ,-.985102-1 1.0100 ,-.18494

.3 1.1483 ,-.90943Z-1 .99625,-.19537

.28 1.1953 ,-.84391Z-1 .99031,-.20426

.26 1.246 ,-.789042-1 .98896,-.21315

.25 1.2734 ,-.765483-1 .98945,-.21787

.24 1.3027 ,-.74462E-1 .99050,-.22279

.22 11.3682 ,-.71192Z-1 .99400,-.23322

.2 1.4456 ,-.693732-1 .99928,-.24428

#Oonvergence was tested at p 1"/2 - 0.34.
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Figure 98

- 0.2 , Re -100 , tR 2 -1 , Mode 0

The first column cI shows the behaviour of the elgenvalue which was tracked from the
interfacial eigenvalue in Figure 7 for R1/R2 - 0.5.

For R1/R 2 " 0.6. the eigenvalue which is tracked from the interfacial sigenvalue, for

example in Figure 7 and 9, lie In column c2.

R1/R 2  C1  c 2

0.5 1.4458,-.693731-1 .99928,-.24428
0.52 1.4632,-.77384Z-1 .98996,-.24079
0.54 1.4788,-.86497Z-1 .98087,-.23635
.6 1.515 *-.12375 .95413,-.21492
.65 1.5391,-.17317 .92814,-.18215
.68 1.5576,-.21326 .90574,-.15303
.7 1.5747,-.24298 .88S23,-.13000
.72 1.5966,-.27278 .85914,-.10415
.75 1.6388,-.31302 .S0715,-.641699-1
.76 1.6551,-.32463 .78624,-.510103-1
.78 1.6906,-.34510 .73897,-.257702-1
.8 1.729a,-.36252 .68444,-.27817Z-2
.84 1.8206,-.39118 .55456, .326773-i
.88 1.9309,-.41243 .40176, .47700z-1
.9 1.9933,-.41842 .32101, .456193-1
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ir.tge 9

I/ 2  -0. 70 s- 100 , MO1 1 dde 0

The first colm track* the interfacial elgenvalue a from its value at p - don

to -/2 w 0.2.

The second column tracks a one-fluid elgenvalue o recorded by Salven and Grosoh for
UIA - .

Truncation of Chel shov polyncalals Is at W - 19

1A2  c co

1.0 .39160, 0 .811"0,-.28413
.9 .40351, .145963-2 .96463,-.26774
.8 .41611, .323953-2 .93120,-.25273
.7 .43647, .53473-2 1.0161 ,-.24079
.6 .46035, .77933-2 1.126 ,-.23714
.5 .49279, .10166z-1 1."29 ,-.26247
.4 .53954, .112713-1 1.32% ,-.35730
.35 .57159, .10191z-1 1.3926 *-.36389
.3 .61257, .637803-2 1.4675 ,-.36010
.2 .73897, .257703-1 1.6906 *-.34510

R1/1 " 0.6 , Re 100 , MR2 a 1 n o 0

The interfacial eigenvalue a is tracked from its value at u 1AA2 - I down to 0.2.

The one-fluid elgenvalue aOG is tracked closely between p - 0.46 and 0.2.

P
1

€: 0G

1.0 .64 , 0
.6 .67521,-.227102-2
.6 .73259,-.9479-2 .92385,-.52008
•46 .79973,-.267499-1 1.0639 ,-.40287
.44 .81229,-.314722-1 1.0907 ,-.37493
.42 .82576,-.37217Z-1 1.1173 ,-.33474
.4 .84021,-.442671-1 1.1142 ,-.29304
:30 .85550,-.52"33-1 1.1175 .-.27473
.35 .87994,-.703093-1 1.1377 ,-.25073
.33 .8962,-.85488B-1 1.1564 ,-.23392
.3 .91806,-. 11425 1.2022 ,-.20574
.20 .9284,-. 13602 1.2423 ,-. 16576
•25 .93956,-. 16804 1.3216 ,-.15780
.23 .94509,-.19766 1.3667 *-.14216
.2 .95413,-.21492 1.515 ,-.12375
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Mal (a) decrees with a and approaches W(RI) as

( se e graph 12). Only for RI/ 0.7 was the configuration of minimum dissipation

found to be stable. At Re - 100, a32 - 1, compare RI/32 - 0.7, 0.8, 0.9 (graphs 13, 6,

14). All mode hae the smine behaviour for RI/2 - 0.3, 0.9; they are unstable if

II/(2 < 1 and stable if iAIA2 > 1. Iowever, we find that for v 1AA2 < I the zeroth mode

can become @table, (see Re - 100, R1/R2 - 0.2, 0.5 or RIt/R2 - 0.6, graphs 1S, 16,6).

Large £32. moderate ft. vI AA2 a 10.2, 21

As OR2 Increases, the region of stability decreame&.

graphs 17 - 10 Illustrate the variation with RI/R 2  at as - 1, £32 " 10. Graphs 19

- 21, Illustrate the variation with RI/R 2 at ft - 100, 633 - 10. In practice, surface

tension may dampen the Instabilities as in the case of flow down an inclined plane (Yh, p.

502). For mall a, Rickox showed that surface tension effects are negligible except when

RI/R2 1 0.1. The real (a) for all modes lie close together. See Graph 22.

1l1W -ft- At ft - 1000, &1/2 - 0.0, £R2 a 1, graph 23 (compare with graph 6) show*

that stability to lost via the 0th mode.

Larger v 1A 2  The variation of In (c) with P 1 / 2  larger than 2 for given a and

RI/R% Is less rapid than for smaller P / 2 . see graphs 24-26 for Ms - 100,

£12 - 1, a1/R2 - o.S, and ft - 100, £2 - 1, RI/R2 - 0.9 and Ps - 100, 03P - 10,

RItP 2 - 0.9.

The experiments reported by Wverage (21 are for pI I 6 and equal volume fluxes,

from Which we compute RI/2, - 0.57. This value also agrees with his photograph.

Calculations in Graph 24 show that for U1/12 ) 4, In a changes very little. It follows

from our calculations (graph 24) that the concentric configuration, in the experiment of

Tverage, should be unstable. Nowever, the growth rates of the unstable modes are very

small, so instabilities may take a longer time to develop than the observation time in

Zverage's experiment. It Is also possible that the instability only grow* to a small

amplitude, and the eventual flow might not be very different from the concentric pattern.

-27-



In the case diet. 1./2 In large, an would be the case In lOubricatlong applications

such as oli transport* we find that ooncentrla onapoulat lon Is the preferred

Configuration.

-28-



GRAPS L

ftginary part of c versus viscolity ratio
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GRAPE 2

Imaginary part of c versus viscosity ratio
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GRAPH 3

Imaginary part of c ersus vi cosity ratio
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GRAPH 4 -

PA - 100. 2 .-1, R /R 2 - 0.6 do

IMaqnfication on the right shows /002 -

behaviour for I < -< 2
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GRAPH 5

Imaginary part of c versus viscosity ratio for
low Reynolds number and moderate a.

Re- , , - 1, R/R 2 - o.S

Modes 0 to 4 increase as pIa/2 decreases from 1 to 0.2
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GRRPH 6

M10o, -1,/R 2 O.8

.05

0 I

.1
. I

I

-34

'Ii:

I i

* I \

00

-34-



GRAPH 7

Re , 100, %R2 - 1, mode 0

Numerals next to the curves denote 1/A 2 .

The curves for - 1.6 to 2.0 are identical under graph scales.

Refer to 5§5 for comments on 1- 0.2.

.05 'No. .2
/ )

I

0.2 -% 0.40.0

C- 
/~ - .

Rl/R 2

35/

/ I

/ I

I

I

I
/
I
t
I

-. 15 ___ t
.I

II

. 2 0. 4 0:6. B IT 0

R /R 2  

,

-35-

_______________!



GRAPH 8

Re -100, a2- 1, mode 1

Nuffbrm next to curves denote-
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GRAkPH 9

Re=100. CiRL2 - ,mode 2

Numerals next to curves denote .

The curves for -l- 1.6 to 2.0 are indistingui.shable

under thiese scale%~.
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GRAPB 10

o- 100, m2 -1, mode 3

Ratios next to curves denote 1
SA2

The curves for -- 1.4 to 2.0 are indistinguishable
P2

under these scales
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GRAPH 11

Re - 100, OR " 1, mode 4
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GRAPH 12

Real part of c versus viscosity ratio.

Re =10, aR2 =1, R1/R 2 =0.6, velocity scale I
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GRAPH 
13
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The magnification on the right
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GRAPH 14

Re - 100, Rl/R2 0.9' G2W1 velocity Acciii.

Curve for mode 3 lies between modes 2 and 4
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GP.AP 15

Isiaginary part of c versus viscosity ratio

Re 100, mR2 - 1, R.L/R 2 -0.2, velocity scale I
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GRRPH 16
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GRAPH 17

Imaginary part of c versus viscosity ratio for large z
and low Reynolds number
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:-_, (GRALPH 18

Imaginary part of c versus viscosity ratio for large a
and low Reynolds number
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17 mRPH 19: Rge 100, (1 10. R -/ 0.6.
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GRAPH 20: Re 100, OR 2  lo R0 R1 /R2  O'0S
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GRAPH 21: Re - 100, cMR2 - 10, Rj/R 2 - 0.9

.3 imaginary part of c versus ii 1/p 2  for large a
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GRAPH 22

Real part of c versus viscosity ratio

Re -100, RJ/R2 - 0.6, c'L2 - 10, velocity scale =1

Curves for mo~des 1, 2 and 3 lie between modes 0 anid 4
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GRAPH 23

Imaginary part of c versus viscosity ratio

Re 100 R ~2 it R./R2 =0.8, velocity scale =1
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GRAPH 24

Re -100, OR2 -1, R /ft 2 -0.5
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GR&PH 25

Re =100, aR 2  it1 IIIR 2 -0.9
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GRAPH 26

Re* 100, RI/R 2 -0.9, a& 10

"Large a" and *large p 1/U2w reqin.

Modes 0 to 4 have the saime behaviour.
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